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1 . Introduction

The Multi Knapsack (MK) problem is defined as follows,

Let each item j (j=1,2,...n) require a certain amount of

space a . of knapsack i (i=1,2,...m) and let c. denote
i] 3

the profit of having item j in the knapsacks. Let x. be

a zero-one variable, taking value one if item j is

included in the knapsacks, and zero otherwise. The capa-

cities of the knapsacks are denoted by b. , b^,...b .

This leads to the following optimization problem:

n
max

j

y c .X

.

n
s.t. y a.^x. < b. (i=1,2,...m) (MK)t. y a. .:

X. e {0,1 } (j = 1 ,2, . . .n)

MK has been used to model problems in the areas of

scheduling and capital budgeting /10/. The problem is known

to be NP-hard /6/; it is a generalization of the standard

knapsack problem (m=1). MK can be solved by a polynomial

approximation scheme /5/, but a fully polynomial one

cannot exist unless P=NP /9/,

In this paper, we are interested in analysing the be-

haviour of the optimal value of MK with respect to changing

capacities of the knapsacks. More specifically, we would

like to obtain an expression that represents the optimal

value as a function of b. (i=1,2,...m) over a range of
1

problem instances.

0751257
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A stochastic model for the problem parameters c.,

a (1=1, 2,... m, j=1,2,...n) will show that the sequence of

optimal values, properly normalized, converges with

probability one (wp1 ) to a function of the b.s as the

number n of items tends to infinity while the number m of

knapsacks is fixed.

A number of probabilistic analyses of approximate algo-

rithms for the knapsack problem (m=1 ) have been conducted

in the past (/I/, /2/, /7/, /11/). So far, the optimum

value has not been asymptotically characterized as a

function of the capacity b of the knapsack. A similar

comment applies to the probabilistic analysis developed in

/5/ for MK under a stochastic model less general than the

one we consider here. In fact, our only requirement will be

absolute continuity of the distributions involved; the

results are unusually robust.

The main result in Section 3 is the asymptotic charac-

terization of the optimum value as a function of b.
'^ 1

(i=1 , 2 , . . .m) . This characterization is obtained by showing

that the optimal values of the LP-relaxation of MK (denoted

by MKLP) have a regular limiting behaviour holding wpl

.

The fact that the optimal values of MK and MKLP are

asymptotic to each other follows from a result in Section 2.

Three other relevant results are obtained. To

characterize the integer optimal solution itself, we shall

prove that the zero-one vectors in a certain sequence are

optimal solutions of MK infinitely often (i.o.). We also

show that, relative to the optimal integer solution, at
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least one constraint has a slack variable whose expected

value equals zero i.o. . Finally, we prove that the se-

quence of optimal dual multipliers of MKLP also has a

regular asymptotic behaviour, converging to a limit wp1

.

In Section 4, the results obtained are applied to

problem MK for the cases that m=1 and m=2 and for specific

distributions of the parameters so as to obtain explicit

formulae for the optimal value of MK, They are depicted

in Figures 1 and 3.

Finally, in Section 5, an approximation algorithm is

proposed. It generalizes the greedy heuristic for MK (cf.

/3/) and will be shown to be asymptotically optimal wpl

.

$n
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2 . Stochastic model and upper and lower bounds

Let us assume that the profit parameters c. (j=1,2,...n)

are independent identically distributed (i.i.d.) random

variables (r.v.), defined over a bounded interval in E with

common distribution F . Analogously, for each i=1,2,...,m,

the requirement coefficients a.. ( j = 1 , 2 , . . . , n) are assumed

to be i.i.d. r.v.'s with common distribution F. over a
1

bounded interval.

In the sequel, r.v.'s will be underlined. Without loss

of generality the interval on which c., a . are defined
-J -13

will be assumed to be [_0,1_[ . We further assume that the

distributions F , F. ( i=1 , 2 , . . . ,m) are absolutely continuous
c 1

and that the corresponding densities f , f. (i=1 , 2 , . . . ,m)

are continuous and strictly positive over (0,1).

It is reasonable to assume that the capacities b. grow

proportionally to the number of items. Specifically, let

b.=nB. (i=1 ,2, . . . ,m) for 66V = (6: 0<6.<Era. 1, (i=1 , 2 , . . . ,m)}11 1 '—il-'

As remarked in /11/ , the i-th constraint

would tend to be redundant if S . 5E fa . .
| , in the sense

1 '—il-i

that it would be satisfied even if all items are included,

with probability tending to one as n^°°.

Define

n n

y C.X.I y a

.

=1 -^-^1=1
z =max{ y c.x.l y a..x.ine. { i = l , 2 , . . . ,m) , x . s j; , 1 M j = l , 2 , . . . n
-n ^^-3 3

' /,-iD D

to be the optimal value of MK and

n n
LP

z =max
—

n

{ y c.x.l y a..x.$n6. (i=1 , 2 , . . . ,m) , O^x.^1 (j=1,2,...n)

to be the optimal value of MKLP

.
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3 . Asymptotic characterization of the optimal value

In order to derive a function of b. (i=1 , 2 , . . . ,m) to

LP
which _z is asymptotic wp1 , we consider the Lacvanaean

relaxation of the problem MKLP , defined as

m n

w (X) = max { y X .b.+ y—

n

.,11^
i=1

m
c .

- y X . a . .

-1
. . 1-11

j =n " i=1 J
O^Xj<:i ,(j = 1,2, ,n)}

It is well known that, for every realization of the

)chastic parameters, th(

the region X$0. Moreover,

stochastic parameters, the function w (X) is convex over
n

min w (X

X^O "

LP
= z

n
(3.1)

Let X" be a vector of multipliers minimizing w (X)—

n

—

n

Define the r.v.'s
m

x^(X)

1 if c .- y X .a. . 5:

i=1

otherwise

(j = 1 , 2 , . . .n)

Then

w
m n

(X) = y x.b.+ y

1=1 j=1

m
c .

- y X . a . . X . ( X

)

-D ,i^ 1-13 -D

Define also

1
m n

L (X) =- w (X) = y X. 6.+ - y

1=1 3=1

(

-n n —

n

m

I.

c .
- y X . a .

-3 ^t^ 1-13
I

-3

)

x^(X)

We first prove a preliminary lemma that establishes

the almost sure convergence of L (X) to a non-random
—

n
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function L(X), defined by

m m
L(X) =

I A.6.+E ex (X) -
I X. E a.x (A) ...11 —

. . 1 ~i-
1=1 1=1

L L
Here E ex (A) and E a.x (A) are used to denote respecti-

vely the common values of E fc.x. (A) |
and E ra..x.(A) 1L -3-3 J^ ^-xj-3 J

(
j=1 , 2 , . . . n) . We shall also write E ax (A) for the vector

(E a,x (A), E a_x (A) ..., E a x (A)).— 1— —2— —m—

We observe that the r.v.'s {c.x.(X)} (j=1,2,...n) are
L

i.i.d., as well as the r.v.'s {a..x.(A)} (j=1,2,...n) for
-i]-j

any 16 {l,2,.,.m}. This property will be used throughout

the paper, sometimes without being explicitly mentioned. In

particular, it can be used to apply the strong law of

large numbers to the sequence L (X) and obtain the following
—

n

result.

LEMMA 3.1: For every A^O, L (X) ^^^> L(X) .
—

n

The next two lemmas, whose proofs are given in the Ap-

pendix, describe some properties of the function L(X) which

will turn to be useful in the sequel.

LEMMA 3.2 : L(X) is twice continuously dif ferentiable and

strictly convex. For each 66V it has a unique non-zero

minimum X"=X"(B) over the region X5O. The gradient is given

by

Vl(X) = 3-E ax^(X) .

LEMMA 3.3 ; For X- the following conditions are satisfied

for i=1 , 2 , . . .m:
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(i) A"V(3.-E a.x-^(X") ) =
1 1 —1—

(ii) E a.x (X") <B. .

If we can prove that L (X'"') > L(,\"'), then through^ —n —

n

^

(3.1) L(A"') would provide an asymptotic characterization of
1 LP— z
n —

n

To establish this convergence, we have to strengthen the

result in Lemma 3.1 from pointwise to uniform convergence

wpl . To do this, we shall apply a theorem from /1 2/ which

states that pointwise convergence of a sequence of convex

functions on a compact subset of their domain implies

uniform convergence on this subset to a function that is

also convex.

First, we have to show that the minima {X"} (n=1,2,...)
—

n

and X" are contained in a compact subset S ^ R .In fact,

we shall show that the minimization of the functions

L (X) (n=1,2,...) and L(X) over R is equivalent to their
—

n

+

minimization over the set

m
S ={X| I B.X. ^1, X.50 (i=1 ,2, . . . ,m) } .

i=1

LEMMA 3.4 : For every realization of the stochastic para-

meters, the functions L(X) and L (X) (n=1,2,...) attain
n

their minimum within the set S.

Proof: it is easy to see that

1 ^
L (0) = -

I c. ^1
^

3 = 1 ^

For any other value of A it holds that
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n m

L(X)=Xe+- y (c.- I X .a. .) x^ {\) >^ X ^ .

Hence, for every A with X3 > 1/ we have

L (A) > 1 $ L (0)
n n

Convexity of L (A) implies, together with the inequalities

above, that A"es, n=1,2,... .The same arguments applied to

L(A) show that A"eS.

As a direct application of Rockafellar ' s theorem 10.8

/1 2/, we then obtain the following result.

wpl
LEMMA 3.5 : L (A) -^^> L(A) uniformly on S.

We are now in a position to prove the required result.

wp 1

THEOREM 3.1: L (A )
-^—> L (

A
" ) .

—n —

n

Proof: Uniform convergence wpl on S can be written as

Pr{V£>0 3n : Vn^n sup II (A)-L(A)|<e} = 1 . (3.2)
o o ,^^ '-n '

Aes

It is easy to see that

II (A")-L(A")| ^ sup |L (A)-L(A)| . (3.3)
' —n —n '

'^ ' —

n

AGS

The combination of (3.2) and (3.3) yields

Pr{V£>0 3n : Vn^n II (

A
"

)

-L (

A
"

)

|

< £ } = 1

o o ' —n —n '

which proves the required result.

From (3.1) and Theorem 3.1 it follows that
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1 LP Wp 1 ^ , . :':

, / o /, \- z -^—> L ( X ) . (3.4)
n —

n

Moreover, we know from Lemma 2.1 that, for each realization,

1 LP "^ 11 1 LP-Z- ^-Z^-Z . ,•^c^nn n nnnn (3.5)

Combining (3.4) and (3.5) one can easily establish the

following theorem.

1 I Wp 1 ,,:':,
THEOREM 3.2: - z ^^—> LA) .

n —

n

This latter result gives the required as^^rmptotic

characterization of the optimum of MK , holding almost surely.

Observe that L (

A
" ) is actually a function of the right-

hand side b. (i=1,2,.,.m) implicitly defined by

minimization of L(A) over S. The problem of deriving a

closed-form expression for this function, or at least of

evaluating it numerically for different values

of its arguments b. (i=1,2,...m) will be considered in the

subsequent Section 4 for specific distributions F ,F .( i = 1 , . . . ,nil

Whereas Theorem 3.2 is concerned with the behaviour of

the optimum value z of MK , the following result says
—

n

something about the corresponding optimal solution.

THEOREM 3.3 : The vector x " ( A
"

) = (x^ ( A
"

) , x^ ( A
"

) . . . x^ ( X ")
)— —1 —2 ~n

is optimal infinitely often (i.e.).

Proof : Define the following events: Q ={x (A ) is not optimal},
L :.- L

R ={x (A ) is suboptimal} and T ={x (A") is not feasible},
n — n —
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By definition, we have to show that the series Zpr{Q }

is convergent. Obviously,

Pr{Q } $ Pr{R } + Pr{T }

n n n

We have

n

Pr{R } ^ Pr { 3e: — ) c.x.(X )< - z - e }=
n n . ^ ~3~3 n —

n

r1 I

LP ^ L, .....
I

,

Pr{- z - ) c .X . (X ) >e

}

n -n .^^ -:-:

n

Since -
( j c.x.(A") - z )

^^^> 0, the series ZPr{R }
n .^^ -J-3 -n n

converges for every £>0. Moreover,

1 L
Pr{T } = Pr{ 3i,£>0: B.- - I a..x.(X") < - e}

n in .^^-iD-D

1 " L •$mPr{6. -- y a..x.(X") <-£},
1 n .^^ -i]-D

so that the series ZPr{T } is also convergent, since from
n

Lemma 3 .

3

6. - -
) a..x^(X") ^> 6.-E a.x^(X") ^0 ( i=1 , 2 , . . .m) .1

1 n ^^^ -ID-] 1 -1-

As a conseguence of Lemmas 3.2, 3.3 and Theorem 3,4 at

least one constraint will be binding in expectation at the

integer optimum i.e., in the sense that the expected value

of its slack equals zero i.o.
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However, this property is not true in general for all

constraints (cf. our comments for the case m=2 in

Section 41

.

To conclude this section a stronger version of Theorem 3.1

will be proved , which extends the convergence result

from the sequence of minima of the Lagrangean L (a) to the
•.'.• wp T "

sequence of their arguments, showing that A -^—> X . This
~n

property indicates regular asymptotic behaviour of the

sequence of optimal dual multipliers _X'. Moreover, it will

be useful in developing the approximation algorithm pro-

posed in Section 5.

" Wpl ••:

THEOREM 3.4: X -^—> X .
• —

n

Proof ; A Taylor series of L(X) around x" can be

written as

L(X""')-L(X''') = (x""''-.\'"') VL(X'"') + ^(x""'-x''')h;a ) (x''"'-x'"') (3.6)
—

n

—

n

2 —n n —

n

where H(X ) is the Hessian matrix of L(X) evaluated at a
n

point X lying on the line segment Qx. , X J and there-

fore belonging to the convex set S.

Positive definiteness of H(X) for every X (see the

Appendix) implies strict positivity of its eigenvalues.

Let a(X) denote the smallest eigenvalue of H(X), and let

a=inf a(X); note that the continuity of a(X) implies that a>0-

xes

It can be easily shown that, for any n,

^(X""'-X""') H(X ) (X'"'-X""') >^ IU'"'-X""'||
^

. (3.7)
2 —n n —n 2 " —

n
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Moreover, due to Lemma 3.3, we have

-X"Vl(X") =

X"VL(X") ^—n

Combining (3.6), (3.7) and (3.8), we obtain that

L(X")-L(X") > ^ II
X" - X"|| 2.

—

n

2 ~n

Consequently, to prove convergence of X_" to X", it

wp 1

remains to show that L(X") ^> L ( X "
) .—n

Indeed,

L(X""') -L(X")| ^ Il(X""')-L (X'"')| + 1l (X""')-L(X") ,—n —n —n —n —n —n

and |L(X")-L (X")| -£-> by Lemma 3.5, whereas
' —n —n —n '

|L (X")-L(X")| -^> bv Theorem 3.1.B
' —n —n '

(3.8)
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4 , Particular cases: m=1 , in=2

The actual computation of E ex (X) and E a . x (X) requires

a choice for a specific distribution for the stochastic'

parameters of MK . in this section, we assume that the

profit coefficients c. as well as the requirements a. . are^ -3 ~i3

uniformly distributed over [[0,1^. This assumption is

essentially the same as in / 5/, / 7/, /11/.

We first present and discuss the results concerning MK

with one constraint. In this case, straightforward calcu-

lations lead to the following formulae:

E ax (X) =

1 A
2

~
3

ex'

if \ i ^

if A > 1

- - —r if X < 1

E ex (X)

3X
if X > 1

2

L(X) =

^(p- ^^ ^h '' ^''
6 X

/6B

1

if 0<6<7
6

A =

3 .^ 1 o 1- - 36 If
g ^6<

2
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Therefore, by Theorem 3.2,

'I
B if 0<B<-^

1 I Wpl ,
:•:-1„^> MA )= 3„2 3 1 .11

je + -6+
5

If --<6<-

The graph of L(X ) as a function of 3 is shovm in

Figure 1

.

Notice that in accordance with Leminas 3.2 and 3.3,

E ax (a'")-B=0.

In the case that m=2, E ex (X) , E ax (A) and E a x''^(X)
^2"

take different forms over different regions of the H

plane. We will describe directly the corresponding functions

X =X (S) defined on the (6^, B^) plane, referring to

Figure 2

.

Define the following regions:

A = { (3^,62) : S-i^B^/ B2^24B^}

B = {(3^,62): 6^4b', 32^' e,4}

C = {(3^,32): ^^>\. 324^1 - \' 6,<J}

D = {(3^,32): 3^^62, B2>|b^- I , £^^32^:^}

E = {(3^,62): Bi^32. B2>fB' , 6i^£2<l|> .

The values of X and L(X ) in the corresponding five

regions where B^ < B_ can be obtained by exchanging 3 with

3^ and viceversa in the formulae given below .
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s
=

^2

242
, X.

246.

L(X ) =

V96^62

Region B :

\
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Region E : to obtain closed form equations for the values

X" , L(X") for B lying in E, an equation of either fourth

or eighth degree should be solved explicitly. Yet,

numerical evaluation is possible through the direct solu-

tion of the problem min L(,\), using an appropriate non-

, Aes

linear programming routine.

A picture of the surface L(X")/ defined over the

(6^/6^) plane and evaluated either analytically or nume-

rically, is presented in Figure 3.

By calculating 6
. -E a.x (A") (i=1,2) for the regions

A,B,C and D and using the remark at the end of Theorem 3.3,

one can verify that in A and D both constraints are i.o.

binding in expectation at the optimal integer solution,

while in B and C this is true only for the tighter

constraint. This corresponds to intuition: when Q is

sufficiently small with respect to 6., as in B and C, the

first constraint can be disregarded, so that MK with two

constraints is reduced to a simple knapsack problem. TO

support this conclusion, observe that the values of A^ and

L(A") obtained for the regions B and C are identical to

the corresponding ones derived for the case m= 1

.

Similar calculations can be carried our for m>3, even

though in these cases only numerical approximation of A"

and L(>.") is possible for many values of 6. The computation

of L(X) and VL{X) can be seen to amount to integrating the

density function over regions defined by linear inequalities,

In many situations, closed form expressions for these

integrals can be derived in principle.
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5. Probabilistic analysis of an approximation algorithm

The algorithm for solving the MK problem considered

in this section belongs to the family of generalized

greedy heuristics, that can be described as follows.

Given m positive weights y^ , y„ , ...,y / order the items
1 / m

according to decreasing ratios

c .

p. =
( j=1 , 2 , . . . ,n)

J m

y y.a. •

x=1

The generalized greedy heuristic, denoted by G(y), then

select items according to this order until the next item

considered will violate one of the constraints if added

to the knapsacks. Let z (y) indicate the value of the
n

solution obtained by this heuristic. Obviously, the qua-

lity of the approximation z (y) is affected by the choice

of the weight vector y. The behaviour of G(y) as a

function of y will be analyzed in a forthcoming paper. In

particular, it is possible to show that (under a non-

degeneracy assumption) the choice y=A", where for each

problem instance \" is the vector of optimal dual multi-
n

G
pliers, leads to a solution z (.\'") which is the same as

n n

the integer round-down of the optimal solution of MKLP

.

A drawback of this choice seems to be that y depends on

the particular problem instance in a non-trivial way. Yet,

in light of Theorem 3.4 the choice y=X where \ '' is defined (as

in Section 3) to be the unique minumum of L(a) , seems to be a rea-



- 19 -

sonable alternative, at least in a probabilistic frame-

work.

In fact, we shall show that the generalized greedy

heuristic corresponding to weights y=A is asympto-

tically optimal wp1 with respect to the stochastic model

of MK introduced in Section 2.

The following result providing bounds on the proba-

bility that a normalized sum of r.v.'s deviates from its

mean is due to Hoeffding / 8/ and will be useful in

what follows.

LEMMA 5.1: Let X^, X^, ...X be independent r.v.'s12 n ^

taking values in the interval 10,11 and having finite
- -1 - n -1

mean and variance. Then, for 0<t<1- — E /, X .

Pr
n

r n-

J = 1
^

- n T ^

t ^ < e
-2nt

(5.1)

Pr

Pr

1 (
r n

n
!<.

n

Lj = 1
-'^

j = 1

I ^j'^M^<: e

n

n - n

y X .-E

-2nt

tU 2 e
-2nt

(5.2)

(5.3)

Define the r.v.

n

u = inf{u>0
I J a .

.X . (uX") $b. (i=1 , 2 , . . . ,m)}
n

. . —11—1 1
j=1
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Clearly, jj can be interpreted as the value of the

weight p . corresponding to the last item included in the

knapsacks by the algorithm G{X").

We first establish a convergence result for the se-

quence of r.v.'s {u } .

r- . Wpl
THEOREM 5.1: u -^ 1 •

-^n

Proof : The proof will be split in two parts. We first
wp1 -

show that u > u» where
-^n

L
y = inf{y^O: E a^x (-X )^3. ( i=1 , 2 , . . .m) }

.

We then prove that '^ = 1 .

Let !_ (y) and I(y) be respectively the indicator func-

tions of the sets

n

a .H = {y^O:
I

a. .x^(yX'") ^ b. (1=1 , 2 , . . . ,m) ^

j = 1

and

Q = {y^O: E a.x (yX")$ 6- (i=1,2,...m)}.

wpl
We want to show that for u>0, I (n) ^> I(u)- Assume

^ " —n ^

first that there exists at least one index k, 1<:k$m, for
L :V

,

which E ax (yX )>£, , so that I(y) = 0. We then have
K, K

that
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1 "" L •-

Pr {ll (y)-I (y) |>c}= Pr{- Y a .
.x

, ( y X ") ^6 .
- ( i=1 , 2 , . . . ,m) }—

n

n
. v.~ij~i 1

1 " L -•• L ••• L
= Pr {- [

aj^jXj(y^ )-E a^^x (P^ ^^^k"^ -k- ^^^ ^^

L •'• 2
-2n(B, -E a, x (yX") ) ,^ ,.

^ e k -k- "^
, (5.4)

where the last inequality is derived from (5.2) by applying

Lemma 5.1 to the i.i.d. r.v.':

Suppose now that I(y)=1. Then

Lemma 5.1 to the i.i.d. r.v.'s ^-.^i'^iX") ( j = 1 , 2 , . . . , n)
^3 3

1
"" L -

Pr{|l (y)-I(y)l>£} = Pr { 3k: - T a, .x.(yX ) > 6,,

}

3 = 1

n
1 L " L " L "

^ n Pr {- y a x.(yX )-E ax (yX")>eT,-E ax (yx")

3 = 1

L '• 2
-2n (B, -E a, X (yX") ) ,^ ^.

^ ne k -k- , (5.5)

again by Lemma 5.1.

Combining (5.4) and (5.5) it follows that the series

ZPr{|^ (y)-I(y)|>e} is convergent for yjiO and any £>0, so

that I (y) ^> I(y) .

—

n

Turning now to the sequence y , we have that
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Pr{|iJ -ijl>e} ^ Pr{y -y>e} + Pr{y-y >e}
—

n

—

n

—

n

^ Pr{I(p+ f)-I (y+ h-^] + Pr{I (y- f)-I(y- f) = 1}
2 —n Z —n 2 2

wpl
for any £>0, so that y ^> y.—

n

Now, to show that y=1 , we recall condition (ii) of Lem-

ma 3 . 3

,

L *
E a.x (A ) $ B .—1— 1

(i=1 , 2 , . . . ,m) , (5.6)

noticing that it implies that y^l. Suppose now that y<1. Since

the functions E a.x (X ) (i=1 , 2 , . . . ,m ) are strictly de-

creasing in each component X (k=1 , 2 , . . . ,m ) (see the Ap-

pendix), y<1 implies that all inequalities in (5.6) hold

strictly. This in turn implies by condition (i) of Lem-

ma 3.3 that a'"=0, contradicting Lemma 3.2. g

We are now in a position to prove the final result.

THEOREM 5.2: z (

X

" )
^^^> L ( X

—

n

Proof: By definition of y_ , it follows that

G =^

^
L :Vz(X)= y c.x.(yX).

Let ffi (y ) =E— —n ^ £l^1 (Hn^"^ I iin
We have that, for b>0.

Pr{ |-z^(>
"'"')

-L(X ) \>z}
n—

^

n

Pr{
I

- ) c .X . (y A ) -L(X")
I

>e}
n >^-3-D -n
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^ Pr{ |-
I

c .x^(y X")- ^(£^) |+|^(y^)-L(A") I >e}
n

^^^ 3 D n -n -n

1
"

v<
Pr{|-

I c.x.{^^x")-^iii^)\>-}+-Pr{\^{^^)-Lix")\>-] . (5.7)

j = 1

Wpl :':

The function p{y) is continuous, so that j^iu )
—=—> L(X )

by Theorem 5.1. It follows that

'. c .

ZPr{ Icp (u )-L(a")
I

>- } < 0°.
'— -^n '2 (5.8)

Moreover, letting F (u) be the distribution of u , we
n ^

'=^n

have that

•j.c
n

Pr{ I- y c .X . (u x")- (p (u )
I

> - }
=

n .^^-3-j -n n

Pr{ |- Tex. (yX")- ^(y) |> ^} dF (y)
n

D = 1

n

2e 4

(5.9)

the last inequality being derived from (5.3), since Lemma

5.1 can be applied to the i.i.d. r.v.'s c.x.(yX").

Combining (5.7), (5.8) and (5.9), one finally obtains

the required result.

Further investigation of the family of heuristics G(y)

seems to be an interesting topic for future research.

Although the results of this paper carry over immediately
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to the minimization of MK (with ^ replacing $), prelimi-

nary investigations suggest that the heuristic s worst

case behaviour for these two models differs substantially,
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Appendix

The purpose of this section is that of proving Lemmas

3.2 and 3.3. To this end, the following two results are

useful

.

L L
LEMMA A.I ; The functions E ex (A), E a.x (A), j=1,2,...m,

are continuously dif ferentiable . and strictly decreasing

with respect to each component A, (k = 1,2,...m).

Proof : It will be shown that the partial derivatives

3Ea.x^(A)

—TT exist and are continuous and strictly negative, for
^\

each A >_ 0. This implies the required result for Ea x (A);

similar arguments can be applied to prove the Lemma also

for Ecx ( A )

.

To simplify the notations , assume that k=m without loss of

generality. Let a' = (a, , a. , . . .a ), and define
I 2 m- I

m
D = {a,c

I

0<a<1 , 0<c<1 , c> ^ A.a.}

i=1

m-1
D'= {a',c| 0<a'<1, 0<c<1, c> T A. a.}-----

i = 1
"

"

m-1
1D = {a 0<a <1, A a <c - T A. a.

m m — m— m m— ^ i i
1=1

m
Let F(a,,...a ,c) = F (c)* il F.(a.) and F'(a,,...a ,c) =

1 m c .^11 1 m
m-1

^-'

= F (c) • n F. (a.) . By Fubini ' s theorem, we have that
c 1 1 -^

i=1
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Ea.x (X) = a.dF
J 3

D

a .dF
J m

D' D
m

dF' = U(X )dF' (A.I)
J "^

D*

where

U(A ) = a .dF =
m I 3 m

m

a .dF ,

3 m

with

m

m

m-1 m-1

(c- y A.a. ) /X if c- y X.a.<X
^ 11 m .

'- , 1 1—
i=1

m-1

i=1

otherwise

m

For 0<X <c- y X.a., the function U(X ) is constant,
m . _ 1 1 m

hence it is continuously dif ferentiable

.

m-1

For X >c- y X.a., by the absolute continuity of F , it
m ^ 1 1 "^ ' m

i = 1

follows that U(X ) is dif ferentiable , and

dU
dA

m

m
r

- a.f
3 m

m-1

c- y x.a.
^ 11

i=1

^

X

I
m

m-1

c- y x.a.

i-1 ' '

/ j ?^ m

f

-fm

m-1

c- y x.a.

i'l ^
^

m

^ ^ m-1 p
c- y x.a.

1=1
I

X
m

3 = m .

X"
m

(A. 2)

dU
For each X >0, the function -;— is continous for

m
m

all (a' ,c) in D' except on the hyperplane
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m-1

c- y X.a. = X . Therefore, the function U(A ) is
. ^ 1 1 m m

continuously dif ferentiable for A >0 almost everywhere in

D' with respect to dF ' . Since D' does not depend on A
,m

it can be concluded / 1 3/ that

9E a.x (A)
— exists and is continuous for A >0. In addition,
9 A m
m

3Ea.x (A)

9 A

dU
dA

dF
m

D'
m

dU
dX

dF' , (A. 3)

D'
o

m

m-1

where D'={a',c: 0<a'<1, 0<c<1, 0<c- 7 A. a. < A }
o — — — — — .^^11— m

1 = 1

since
dU
dA

m
on D'-D'

.

o

It remains to be shown that the right derivative of

Ea.x (A) in A =0 exists and is equal to the limit of
—J— ra

^

(A. 3) for A ^0 . To see this, define
m

m-1

D' = {a* i 0<a'<1 , y A .a. < 1 } ,
a — — .^,11—

1=1

D' = {c
I

0<c<1 ,

D = {a ' 0<a<1 ,a ' — —

m-1

0<c- y A. a. < A }— '- 1 1 — m
i = 1

m-1

y A .a. < 1 } .

i=1 ' ^-

We have, for A >0,m

lim
X ^O'
m

3Ea.x (X)

9X
m

lim
X ^0^
m D"

a

dU
dX

dF dF'
a

(A. 4)

D'
c

m
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m-1

where F'(a') = n F.(a!). Applying the substitution
a .^11

1=1

m

c= y X . a to the inner integral in (A. 4) , one obtains from
-1

''"

(A. 2), and for all j=1,2,...m,

1

-^ dF
dX c

m

- a .a f
J m c

^ m ^

y X.a.

i=1 ' '

dF
ra

D'
c

Since D does not depend on X , we have
a ^ m

lim
X -0 +
m

9Ea.x (X)

9X
m

/ lim
- X ->0'

D m
a

-a . a f
J m c

m
y X.a

i=1 ^ ^
dF

/ -, a f
m c

m-1
j

y X.a. dF ,

. 11 a
1 = 1

(A. 5)

m
where F (a) = 11 F . (a. )

i=1 ^ ^

It can be easily verified that the right derivative of

Ea.x (X) in X =0 exists and is equal to the last term in
-J- m
(A. 5)

.

To conclude that Ea.x (X) is strictly decreasing with

respect to X , observe that
m

L
dEa.x (X)
-J-

., , is strictly negative for X >0. Indeed, it follows
oX J 3 fj^
m

from (A. 2), (A. 3) and {A. 5) that this derivative is equal,

for every X >0, to the integral of a strictly negative

function over a set of positive measure.
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LEMMA A. 2 ;For k=1,2,...m, the following relation holds;

3E ex (X) ? 3E a X (X)— = 1 X . ~i~
dX, i=1 ^ 3X,

Proof : Again, without loss of generality, assume k=m.

Define

m
D = {a: 0<a<1 , 7 X.a. < 1 }
a — -

.
^ . X 1 -

i = 1

m
D = {c: 0<c<1 , c > y X .a.

}

1=1

We have, by Lemma A.I,

3E ex (X)

3X
m

3X
m

cdF dF

D D

D

dU

dX a
m

m

y X.a.
^ 11

i=1

where U ( X )
=

c m
m

(A. 6)

CdF .

c

Henee, for X >0,
dU, m m

m dX
m

y x.a. a f ( y X.a.), which,.^,iim c.^,11 '

i=1 i=1

substituted in (A. 6), gives

3E ex (X)

3X
m

m ^ m
yx. / -a.af (yx.a.
.^,1 / ime .^,11
1=1 J 1=1

D

)dF (A. 7)
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m-1

Applying the substitution a = (c- T A.a.)/X to the
m .^ 1 1 m

integral in (A. 7) and performing straightforward

calculations, we obtain

m
A. a )df

a

m

/ -a.a f ( y A.a. )dF
/ 1 m c .^,11 c

D

dA '

m
(A. 8)

where D", F' and U are defined as in Lemma A.I. Combining

(A. 7) and (A. 8), the required result easily follows for

A >0. Continuity of the partial derivatives implies that
m '^

Lemma A. 2 holds also for A =0.
m

Lemma 3.2 and 3.3 can now be proved.

Proof of Lemma 3.2: For k.= l,2,...m, we have

3L_

8 A,

3E a x^{A) 3E cx^ ( A

)

+ —
A,

m

I A

i=1

3E a.x (A)—1—

= \ -
3E ax (A)

9a!

by Lemmas A.I and A. 2. This implies that L(A) is conti-

nuously dif ferentiable and that VL(A)=6-E ax (A).

Moreover, we have

3A

^

3L

3 A, 3A

(6j^-E a^x (A) )

3E a, x (A)
—k—

3A .

> ,

again by Lemma A.I. This implies that L(A) is twice

continuously differentiable and strictly convex over

the region A>0, as its Hessian matrix H(X) is positive
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definite for A>0.

L(\) is strictly convex, so that if it has minimum

over the region X>0, that minimum must be unique. To see

that at least one minimum exists, one can proceed as in

the proof of Lemma 3.4.

Proof of Lemma 3.3; Since L(X) is continuously differen-

tiable, and the constraints X>0 do satisfy the first-

order constraint qualifications in X" /4/, Kuhn-Tucker

conditions for optimality hold at X"and lead immediately

to (i) and (ii) .
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